
FORMAL LANGUAGES FOR EXPRESSING DATA CONSISTENCY RULES AND
IMPLICATIONS FOR REPORTING OF QUALITY METADATA

Paul Watson

1Spatial, Cavendish House, Cambridge Business Park, Cambridge, CB4 0WZ, UK

KEY WORDS: Re-use, rules, metrics, mining, languages, metadata

ABSTRACT:

Over the past thirty years, in excess of 36 billion dollars has been invested in the collection of spatial information across the public
sector in Europe (PIRA, 2000). There is a clear imperative now to maximise the use of that data captured at such great expense. The
information society in which we live makes it ever easier to discover and exploit that data, in principle. However, data collected in
the past for a specific application is not necessarily directly re-useable in a new and different context. The original collection process
will have imposed many restrictions and brought many assumptions which need to be re-evaluated against the new usage scenarios.
More difficult still is the fact that many of the underlying assumptions and restrictions were not explicitly stated, for example in data
specifications, at the time but are simply inherent in the data itself. In practice, this means that data often has to be qualified and
tested for the specific criteria important to a new pattern of use.
This paper discusses the requirements for a rules language which is capable of expressing such consistency criteria for spatial and
other linked data which is initially found in scattered locations in an internet or intranet environment. The process of representing the
knowledge inherent in scattered data and the rules which constrain it in a portable and platform independent way is illustrated
through a series of examples. Knowledge persisted in this way can be used within real execution environments to generate
automatically important data consistency and quality metrics. The storage of such quality metrics within a database and provision of
registry enquiry services opens up the possibility of searching for data on explicit quality and consistency grounds to meet well-
defined application needs. The implications of this for spatial data re-use and advanced data mining applications are reviewed.

1. INTRODUCTION

Since the advent of the digital age, data on a wide variety of
subjects has been collected and stored in computer databases.
Some of the earliest technology developed for the digital
computer was database software. This data management
function has been a key element in our developing use of the
computer for decision support activities. However, to remain
useful beyond its immediate application, data must be clearly
classified and organised by type and purpose. This kind of
metadata allows users or potential users of the data to
understand the nature and context of the data and, when
correctly organised, to discover data might be relevant to
their current application via database registries.
Data is typically collected for one or a small number of
specific uses by a particular individual or group. By the very
nature of the collection process, many aspects of the data are
specific to the originating application and these constraints of
the data acquisition process act to limit the useful range of
application of the data in future. In the most severe cases of
mismatch, the required data elements for a new application
are simply not present and the inappropriateness of the data
for reuse is discovered immediately. However, the mere
presence of the sought after data elements does not guarantee
that they are fit for purpose in new applications. Both silent
statistical and other selection biases inherent in the data
acquisition and semantic differences in terminology between
application domains can lead to unintentional misuse of data.
These more subtle errors are not uncovered directly and may
readily lead to false conclusions being drawn from the data.
These considerations apply equally well to spatial
information as they do to any other data. Interoperability of
services which exchange and reuse spatial information is
dependent on interoperability of the underlying spatial
information at two quite separate levels, syntactic and
semantic. The syntax or encoding rules of the information

must be well understood by the exchanging parties. XML
encoding languages such as Geographic Markup Language
(GML) provide a good foundation for ensuring syntactic
interoperability based as they are on XML and XMLSchema
with their own well-defined syntactic structure. GML
provides additional encoding rules for constructing valid
application schemata which further assist in the marshalling
and unmarshalling of geographic features and their attributes
and the representation of associations between them.
However, while these syntactic constraints are necessary for
reliable data transport, they are not sufficient to ensure that
the exchanging parties can correctly interpret the features
meaning and exploit the features correctly for decision
support purposes. To guarantee that the features are
consistent with a particular domain interpretation (for
example land management or contour data), it is necessary to
describe the logical consistency constraints within that
domain in a formal way and test the features against these
constraints or rules. We know that, in general, land parcels
should not overlap and contours should not intersect.
However, simply building an application schema containing
these terms (syntactic structure) does not guarantee that
feature instances encoded in GML satisfy the logical domain
constraints (semantic structure). The ability of the features to
support reasoning and decision support tasks within the
problem domain then depends on the degree of conformance
with the domain consistency rules. These formal semantic
rules must therefore be expressed in addition to the
application schema. Given the particular role that spatial
information plays in decision support, it has received much
attention from governmental and other agencies and this has
given rise to a classification of dedicated geographic
metadata by the International Standards Organisation (ISO
19115). In addition to the conventional role of metadata in
identifying the classification, source and authority for the
data, ISO 19115 develops a sophisticated taxonomy of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

metadata elements relating to data quality which relate
directly to the range of applicability of the data. These
elements address areas such as completeness (errors of
commission or omission), logical consistency (conformance
with a particular data model and set of constraints e.g.
topology rules), thematic accuracy (whether data elements
are correctly classified), positional accuracy and temporal
accuracy. This metadata taxonomy is an invaluable way of
conceptualising and categorising spatial metadata. However,
the standard does not address in detail the precise contents of
the metadata. Many metadata elements are specified simply
as free text. This unstructured data model clearly facilitates
simple uses such as browsing by a human being or free text
searching. However, as the range of sources and variety of
spatial information available on line grows, it will become
increasingly difficult reliably to locate accurate and relevant
information and interpret its meaning without a more formal
content specification for metadata. This content specification
should allow the logical and semantic constraints which
apply to spatial information to be represented as a set of
logical rules which the data obey and for these rules to be
queried across the Web.
The aim of this paper is to define a set of requirements for
such content and outline an implementation of that logical
rules language which leads to rigorous and semantically
meaningful and queriable metadata.

2. METHODS

2.1

1.

2.

3.

4.

5.

6.

7.

2.2

1.

2.

3.

Requirements

We begin by setting out the requirements of the rules
language which will allow the logical constraints satisfied by
a particular data source to be specified.

Unambiguous. It is important that the domain
constraints are expressed in a mathematically rigorous
way. This allows the rules to be used as the basis of fair
testing and means that the results of such testing are
fully objective and are not open to interpretation.

Logical & Portable. Given the distributed and
diverse nature of geographic data, it is advantageous to
keep a logical separation between the terms and
definitions (ontology) of the feature application schema
and the terms and definitions of the domain model to
which the rules apply. In other words, the rules are
genuinely abstract knowledge and should be decoupled
from any particular physical implementation of the
instance data to allow reuse of the logical rules with any
number of logically compliant feature sources. A feature
source may be compliant with the rules either directly,
because it is expressed using the same ontology as the
rules, or alternatively, a feature source may be
compliant with the logical model of the domain even
though the syntactic structure of the data differs. In this
case, various model transformations, whether simple
styling rules or otherwise, may be used to covert feature
instance data into a form which can be verified against
the rules.

Compact. For reasons of manageability and ease of
comprehension, it is important that the rules language
has a concise grammar. The number of distinct concepts
in the language should be kept as small as reasonably
possible.

Intuitive. It is important that the language be
naturalistic and easy to learn. The transformation
between constraints expressed using natural, spoken

language and the formal rules language should be kept
as simple as possible. In some cases, this may conflict
with the requirement for simplest terms, above. A
balanced view is required in these cases.

Quantitative. The language should support
quantitative reasoning about the feature data and the
development of formal metrics which summarise the
level of compliance to data quality measures.

Web compatible. The language should be
compatible with feature data which is scattered across
multiple physical and organisational barriers.
Constraints which apply between feature data held
under separate authority and control is often equally
important to constraints which apply within data under
the same authority. The principal implication of this
requirement is that the rules language support a naming
authority and disambiguation scheme or namespace
support.

Declarative & Refinable. The nature of collection
and management of feature data is such that the entire
rules base which constrains the data is very rarely
known completely at the start. Both within and between
sources of feature data, new constraints are constantly
be discovered and added to the rules base. It is
important, therefore, that the rules language makes it
simple to add and refine rules without disrupting the
overall structure of the rules base unduly

Choice of Rules Language

The field of knowledge management or the authoring and
exploitation of abstract knowledge representations has
received much attention recently through initiatives such as
the Semantic Web community (W3C, 2004b). A key
objective of this initiative is to make the exchange of
mathematically rigorous models of knowledge such as
conceptual graphs possible. This has led to the development
of Web Ontology Language (OWL) (W3C, 2004a) as the
basis for conceptual representation. This language has its
foundations in a field of mathematical logic called
Description Logic and this has been used to formally classify
the different complexity classes of different sorts of logical
expression. OWL divides the complexity of expressions into
three kinds:

OWL Lite. This is a simple dialect suitable for
expressing simple concepts and relationships.

OWL DL (Description Logic). This sub-language
represents only concepts which are formally decidable
(there exists a decision procedure whether a logic
expression is true or false.)

OWL Full. This language permits a much richer
range of expression (e.g. concepts which may represent
both instances and classes) which make the language
formally undecideable (there exists no decision
procedure).

Development to date has concentrated on OWL Lite and
OWL DL precisely because these sub-languages are
mathematically tractable and therefore completely general
tools support is feasible. These languages support various
reasoning tasks such as deriving complex logical
classification schemes (as entailments) from a simpler set of
declared relationships.
Some kinds of constraints, especially reasoning over
relationships are not supported using the concepts defined in
OWL but can be expressed using a rules language layered on
top of OWL. An early candidate draft of Semantic Web

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

Rules Language (W3C, 2004c)) has been proposed within the
Semantic Web initiative for this purpose. SWRL extends the
conceptual model of OWL to include rules expressions.
However, SWRL contains a fixed set of built-in operators
which address only basic XMLschema datatypes and
therefore have no support for derived geometric types. This
makes SWRL unsuitable for the current purpose. Instead, a
dedicated XML grammar based on first-order logic
(predicate logic) was developed and used. It should be
recognised that the approach here is conceptually similar to
SWRL with the addition of support for spatial operators.

The XML rules have a very simple vocabulary:

1.

2.
3.
4.
5.
6.

2.3

Predicate, an operator which returns either true or
false

Constant
Variable –free or bound
Built-in Function
Logical Connective - NOT, AND, OR
Quantifier – universal, existential

Predicate Types

Predicate Type
Relational Predicate
Exists Predicate
ForAll Predicate
Conditional Predicate
Referential Predicate
Range Predicate
And Predicate
Or Predicate
Not Predicate

Table 1. Predicate Types

The simplest predicate type is the RelationalPredicate. It is
used to check whether two Values (see below) have a defined
relation. It consists of two Values, an LeftValue (Lvalue), a
RightValue (Rvalue) and a comparison operator (Relation).
The ExistsPredicate is an existential quantifier. It contains a
feature type, a numerical quantifier, a relation and a child
predicate. It allows expressions of the form, “There exist
greater than 3 features of type B for which the following
condition holds –> {child predicate}”. This may be used to
test for the existence or absence of features of a particular
type, as in “For Lake features: There exist exactly zero forest
features for which the forest geometry is contained within the
lake geometry.”
The ForAllPredicate is a universal quantifier. It contains a
feature type and two child predicates. It allows expressions
of the form, “For all features of type X which satisfy {first
child condition} verify that {second child condition} also
holds true.
The ConditionalPredicate permits conditional evaluation of
parts of a rule. It contains two child predicates. It allows
expressions of the form, “If {first child condition} holds then
check that {second child condition} also holds.”
The ReferentialPredicate tests whether a particular named
association exists between two features. It contains two target
feature types and an association name. It allows expressions
of the form, “Check if there exists a relationship from
{feature instance A} to {feature instance B} via the
association {reference name}”.
The RangePredicate tests whether a value lies in a range. It
contains three Values and tests the first supplied Value to

find whether in lies between the second and third supplied
Values. It allows expression of the form, “Check whether
{First Value} lies between {Second Value} and {Third
Value}.”
The logical predicates AndPredicate, OrPredicate and
NotPredicate allow for Boolean logic to be applied to any of
the results returned by other predicate types. AndPredicate
and OrPredicate take two child predicates and return the
standard Boolean result. The NotPredicate logically inverts
the sense of the child predicate result.

2.4 Value Types

Value Type
Static Value
Dynamic Value
Temporary Value
Conditional Value
Aggregate Value
Built-in Function Value
Class Value
Summed Value
Difference Value
Product Value
Quotient Value
Modulus Value
Negated Value

Table 2. Value Types

A StaticValue is a typed constant. Its value is assigned
explicitly within the rule expression and this value can then
be used within other comparisons such as
RelationalPredicates. The only datatypes currently supported
are simple scalar datatypes such as integers, reals and strings.
An AssignableValue represents a variable in a rule
expression is one of two types – a DynamicValue is a typed
attribute fetched from a feature instance, a TemporaryValue
is used to hold a derived result within a rule for comparison
in a later and possibly unrelated clause.
A ConditionalValue is a value which may take one of two
values depending upon the truth of a child predicate. It
contains two values and a predicate. If the predicate
evaluates to true the first value is returned else the second is
returned.
An AggregateValue is used to return some Aggregated result
(sum, average, concatenation, geometric union etc.) from a
number of features. It contains a feature type, a feature
attribute name, an aggregation function and a child predicate
which holds true for the features to be aggregated. It allows
expressions of the form, “ For features of type {Type} which
satisfy {Child Predicate}, compute and return the
{Aggregation Function} from the attributes {Attribute
Name}.”
A BuiltinFnValue is used to derive one Value from another
using a specified algorithm. It contains a Value of any type
and an algorithm name. A variety of algorithms are
supported varying by the datatype of the Value supplied,
including simple mathematical and string manipulation
functions as well as geometric algorithms such as convex
hull, buffer or Douglas Peucker simplification. This
functionality can be used, for example, to test whether a
feature lies within a specified buffer of the geometry of
another feature. (The set
of supported algorithms
can be augmented by

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

implementing an algorithm according to a particular rules
system interface. The algorithm then becomes available as
another Built-in function within the rules language.)
A ClassValue returns the class name or feature type of a
feature.
The final set of Value types are simple arithmetic
convenience types, SummedValue, DifferenceValue,
ProductValue, DivisionValue, ModulusValue,
NegatedValue, having the conventional meanings.

2.5 Relation Types

Relation Types
Scalar
Equals Relation
NotEquals Relation
Less Relation
LessEquals Relation
Greater Relation
GreaterEquals Relation
Begins Relation
Ends Relation
RegExp Relation
Spatial
Spatial Equals Relation
Spatial Disjoint Relation
Spatial Intersects Relation
Spatial Touches Relation
Spatial Overlaps Relation
Spatial Crosses Relation
Spatial Within Relation
Spatial Contains Relation
Spatial Within Distance Relation

Table 3. Relation Types

Relation types are gathered into two groups, ScalarRelation
and SpatialRelation. ScalarRelation specifies a relationship
test between two scalar values of an appropriate type.
Numerical relationships supported are EqualsRelation,
NotEqualsRelation, LessRelation, LessEqualsRelation,
GreaterRelation, GreaterEqualsRelation, with the
conventional meanings. Character String relationships are
BeginsRelation and EndsRelation which test whether a
character string value begins or ends with the supplied
fragment or RegExpRelation which tests whether a character
string value matches a supplied fragment according to a
PERL-compatible regular expression.
SpatialRelation types correspond to the ISO/OGC Simple
Feature specification spatial interaction types (ISO 19125-
2:2004) and take those meanings. In addition to the
topological interaction types, SpatialWithinDistanceRelation
can be used to test whether to geometries approach within a
user specified distance.

2.6 Rule Examples

This example represents the simplest spatial consistency test
possible. It states the constraint that, in most cases, the
presence of forest within water areas is inconsistent.
Therefore, forest features should be tested to ensure that their
geometry does not intersect the geometry of any water body
features. The illegal forest features can be depicted
graphically:

Figure 1: Illegal Coniferous Forest-Water Area Re-
lationship

The constraint might be expressed in prose as follows:

Check for Coniferous Forest objects that there are no
Water Area objects for which Coniferous
Forest.geometry overlaps Water Area.geometry

The rule can be visualised using a predicate tree structure as
follows:

Figure 2: Predicate Tree Structure for Coniferous
Forest – Water Area Consistency Rule

This tree shows that the main rule structure is an
ExistentialPredicate testing for the existence (or non-
existence in this case) of Water Area features which meet a
particular RelationalPredicate. The RelationalPredicate tests
candidate Water Area features to see whether their
geometries overlap the Coniferous Forest feature currently
under test.
This predicate tree corresponds very closely with the XML
serialisation of this rule:
<?xml version="1.0"?>
<Rule>
 <RootPredicate classLabel="Coniferous Forest">
 <ExistsPredicate qualifier="exactly" n="0" classLabel="Water Area">
 <RelationalPredicate>
 <DynamicValueclassRef="Coniferous Forest" propName=“geometry"/>
 <SpatialOverlapsRelation/>
 <DynamicValue classRef="Water Area" propName="geometry"/>
 </RelationalPredicate>
 </ExistsPredicate>
 </RootPredicate>
</Rule>

The target feature types appear as the classLabel and
classRef attributes of the appropriate Predicates and Values
and the feature property names for each DynamicValue are
given in the Value propName attribute.
In this second example, we show that some complex and
powerful expressions may be constructed from the relatively
simple building blocks of Predicates, Values and Functions.
Some slightly more advanced features of the rules language
such as BuiltinFunctionValues and AggregateValues are used
to demonstrate the use of derived results internal to the logic
of the rule.
This rule tests that the shoreline of Island features matches
the corresponding limits of all of the Water Areas which
border the Island.
We can portray the correct relationship between Island and
Water Area:
The Island is the brown hexagon at the centre of the picture.
It is surrounded by a number of Water Area features (blue
hexagons). The derived shoreline of the Island is drawn in
red. The derived set of Water Area features which abut the
Island are outlined in orange.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

The rule can be
expressed in
something
approaching prose
as:
Check for Island
objects that
outer_ring(Island.ge
ometry) equals
intersection(Island.g
eometry,union(Wate
r Area.geometry)
over all Water Area
objects for which
(Water
Area.geometry
touches
Island.geometry))

Figure 3: Island
Water Area Consistency Rule
The corresponding predicate tree looks like this:

Figure 4: Predicate Tree for Island Water Area
Consistency Rule

This tree is a simple RelationalPredicate which compares a
BuiltinFunctionValue (outer_ring) with another
BuiltinFunctionValue (geometric intersection) which in turn
nests an AggregateValue (geometric union over Water Areas
touching the Island) and tests them for (geometric) equality.
The resulting tree is very compact for such a sophisticated
expression.
Once again the XML encoding closely mirrors the predicate
tree structure.

<?xml version="1.0"?>
<Rule>
 <RootPredicate classLabel="Island">
 <RelationalPredicate>
 <BuiltinFnValue fnName="outer_ring">
 <DynamicValueclassRef="Island" propName="geometry"/>
 </BuiltinFnValue>
 <SpatialEqualsRelation/>
 <BuiltinFnValue fnName="intersection">
 <DynamicValue classRef="Island" propName="geometry"/>
 <AggregateValue fnName="union" classLabel="Water Area">
 <DynamicValue classRef="Water Area" propName="geometry"/>
 <RelationalPredicate>
 <DynamicValue classRef="Water Area" propName="geometry"/>
 <SpatialTouchesRelation/>
 <DynamicValue classRef="Island" propName="geometry"/>
 </RelationalPredicate>
 </AggregateValue>
 </BuiltinFnValue>
 </RelationalPredicate>
 </RootPredicate>
</Rule>

An XSLT stylesheet also caters for rendering this rule into
pseudo-prose, although as rules incorporate many
BuiltinFnValues and AggregateValues the result becomes
less clear and less like spoken English. It remains a good
sanity check, however, as reading the styled rule through
helps to confirm that the meaning has been captured
correctly.
A further advantage of the strict hierarchical structure is that
it is simple to parse the rule to determine its validity and
feedback any syntactic inconsistencies (e.g. values out of
scope) in the rule to the user.

2.7

2.8

Metadata Publication

The final results of the conformance tests are obtained in the
form of metadata which is compliant to the conceptual model
of ISO 19115 Metadata and encoded in the form
recommended in ISO 19139. The results are supplied within
the DQ_DataQuality metadata element as DQ_Element
descriptors. The nameofMeasure and measureIdentification
are taken from the corresponding rule or ruleset identifier.
The dateTime is taken from the completion time of the
conformance check and the results (DQ_Result) are compiled
from the appropriate summary statistics within the
conformance checking session. The metadata can be
published automatically to a compliant OGC Catalogue
(OGC, 2005) for long-term archiving and to facilitate
discovery of data with appropriate quality characteristics.

Implementation

We have made an on line rules engine, Radius Studio,
capable of evaluating logical rules expressed using the
language on multiple sources of vector feature data from
disparate locations.
The server has been implemented as a number of stateful
web services each of which manage a distinct set of entities
within the system, such as datastores, rules or sessions. In
each case, the service has been exposed using a standardised
SOAP binding (W3C, 2003) with request/response messages
in RPC/literal form.
In addition, for the benefit of clearer demonstration, a thin,
javascript, browser-based client was written to facilitate
interaction with each of the service components.
A datastore is an external repository for data, usually
including a geographic component. A datastore acts as an
abstraction over feature services including OGC Web Feature
Service (OGC, 2004) . The user selects some or all of the
data in the store by specifying the feature types and attributes
of interest and an extent for spatial selection. The service
checks it for conformance to a defined set of rules and
optionally applies automated corrections. Any corrected data
may be returned to the same data store or a different data
store. An optional schema mapping defines how data should
be converted between the schema of a data store and the
internal rules schema used by the server. It translates
between feature and attribute types, and classes and
properties in the server workspace. The user selects which
features and attributes to import and defines the names of the
corresponding classes and properties for the rules
environment. This permits data from different stores to be
compared more flexibly using a common set of terminology
for any given domain such as transport or hydrography.
It is possible to define several data stores that access the
same data through different schema mappings. It is possible
to read data from several data stores into the service for

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

processing against a set of rules that analyse relationships
between datasets as well as within a dataset. Each data store
has two schema mappings associated with it – one input and
one output. Output mapping is not needed if the service is
being used only for checking rules without changing data. It
is also possible to input from one store and output to a
different store. The service also provides integrated support
for externally defined ontologies which describe the structure
of the data in a specific data store. This is achieved by
interfacing with the open source Jena ontology library (see
http://jena.sourceforge.net/), allowing ontologies in various
formats such as RDF and OWL to be read into the service
and used for rules authoring and rules-based reasoning.
A rule is a logical expression which can be used to test the
logical consistency of a feature. The rule is expressed using
the rules language which is an XML encoding of first order
logic as outlined above. Rules are managed within the server
by a dedicated web service – the RuleManager Service. This
service allows rule expressions, along with suitable metadata,
to be stored and their definitions retrieved and used within
conformance checking and data reconciliation tasks.
The SessionManager service allows the definition of an
ordered sequence of tasks to process data. The service also
manages the execution of these sequences against feature
instance data and storage and retrieval of the resultant
metadata.Task types are:
• Open Data, which enables access to data from a defined
datastore. A session may choose to open data from a number
of data sources and then check rules based on relationships
between features stored in different locations.
• Discover Rules, which analyses data based on a defined
discovery specification to identify candidate rules.
• Check Rules, which checks a defined set of rules on the
data and reports non-conformances. It is also possible to
publish conformance checking results to a catalogue server.
Published metadata consists of data quality items (qualitative
and quantative metrics) and is encoded in a standard form
(ISO 19139).
• Apply Action, which applies one or more actions to the data
which are encoded similarly to rules.
• Apply Action Map, which checks a set of rules defined in an
action map and applies the associated action to each non-
conforming object.
• Commit Data, which will incrementally commit any data
changes back to the data store it came from. Typically this
occurs after a correcting action has been applied by an action
or action map.
• Copy to... which will copy data to a different data store.
• Pause, which requests the service to suspend processing to
allow results to be examined before processing the next task
in the session sequence.
A session can be viewed as a specialised workflow template
for data quality testing and reconciliation. The template can
be stored, retrieved and modified as necessary to work
against different sources of feature data or to incorporate new
rule definitions or actions.
The Rule Builder allows the definition of potentially
complex rules with an easy to use, tree structrured browser
interface. The rule is expressed as a series of clauses built up
using pulldown menus from the bar immediately above the
graphical illustration of the rule.
The description at the bottom provides English text
representing the currently selected clause; in this case the
complete rule. The element details are used to specify the
parameters associated with the currently selected rule. This
part of the form always includes a description of the

information required. In this case, the top-level rule specifies
the class to be checked. An optional name label is used when
the rule needs to distinguish between two different features
of the same class. While editing a rule, it may temporarily be
incomplete until a new clause is added or parameters are
defined. These problems are highlighted clearly in red and a
description of what is required displayed. Multi-level
undo/redo is available to recover from mistakes while
editing. Drag and drop can be used to reorder clauses of a
rule. Cut and paste can be used to transfer all or part of a rule
into another rule.

Figure 5: Rules Browser Form

3. RESULTS

This section describes the use of the SOAP Web Service
interfaces for the purposes of validating features remotely.
The features in question are a pair of data layers
(MOORLAND and LFA) from different feature services with
a geometric containment constraint between the feature
instances. The scenario will use just one of the service
endpoints – the SessionManager. All other objects,
Datastores and Rules, are assumed to exist before the session
commences. Note that Datastores and Rules may be created
dynamically through the relevant web service endpoint just
like the Session, but this usage will not be illustrated directly.
The first task is to create a work session definition in which
the validation rules will be checked. This session definition
consists of a number of tasks: a connection must be
established to the relevant data source(s); a set of rules will
be indicated for checking. The SOAP message to create the
session object within the system is as follows:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://laserscan.com/RadiusStudio">
 <soap:Body>
 <ns:create>
 <DTO_1>
 <id
xmlns:ns1="http://www.w3.org/2001/XMLSchema-instance"
ns1:nil="true"/>

 <metadataXml><![CDATA[<Metadata>
<Name value="Test Session"/>
<Description value="Created by TQAS Web Service"/>
<Comments value="Should be deleted after use."/>
</Metadata>]]></metadataXml>
 <name>Test Session</name>

 <parentId>0ac8dd7dc0a85abd01bd967519e607
48</parentId>

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

 <referencesXml
xmlns:ns2="http://www.w3.org/2001/XMLSchema-instance"
ns2:nil="true"/>
 <sequence>1</sequence>
 <xml><![CDATA[<Session>
<Sequence>
<Task label="1" type="Open Data">
<DataStoreRef ref_id="0ac3a94ac0a85abd0181f53b7fc2e033"/>
</Task>
<Task label="2" type="Open Data">
<DataStoreRef ref_id="0ac98ebdc0a85abd019732afc38ace6e"/>
</Task>
<Task label="3" type="Check Rules">
<RuleRef ref_id="1a714a8ec0a85abd01dafa55d327e7be"/>
</Task>
</Sequence>
</Session>]]></xml>
 </DTO_1>
 </ns:create>
 </soap:Body>
</soap:Envelope>

There are two main sections to the request: the
metadataXML and definition of the sequence of tasks itself
xml. This example states that the system should open and
read data from two data sources (each known by a unique
identifier) and that is followed by conformance checking a
single rule, again known by its unique identifier. The check
rules task can also refer to a folder (logical collection of
rules) but the syntax is identical.The Datastore and Rule
objects which are referenced within the body of the session
definition are defined in a similar way to the Session object,
by the create() method, and may be queried and retrieved by
invoking the get() and getByName() methods on the
appropriate DatastoreManager or RuleManager service
endpoint.

The response is in effect a copy of the input embellished with
further metadata and internal references and crucially an
identifier in the id element which can be used to refer back to
this session definition. Once the session has been defined, it
can be run using the run() method. The request is given
below:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://laserscan.com/RadiusStudio">
 <soap:Body>
 <ns:run>

 <String_1>1a7331fbc0a85abd006c7fcd01bc0b08</String_1
>
 </ns:run>
 </soap:Body>
</soap:Envelope>
The progress of any session can be monitored using the
getSessionProgress() method by passing in the persistent
identifier of the Session. The request is given below:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://laserscan.com/RadiusStudio">
 <soap:Body>
 <ns:getProgress>

 <String_1>1a7154bfc0a85abd006c7fcd67afd715</String_1
>
 </ns:getProgress>
 </soap:Body>
</soap:Envelope>

The session passes through a number of states while
executing and the sequence number of the current working
task and % complete are reported while the session continues
to execute. Once the session has run to completion, it is said
to be in the “finished” state as given in the status attribute of
the Progress element. To obtain the Session results, use the
getSessionResults() method. An example request is given
below:
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://laserscan.com/RadiusStudio">
 <soap:Body>
 <ns:getResults>
<String_1>1a7154bfc0a85abd006c7fcd67afd715</String_1>
 <String_2>3</String_2>
 <int_3>1</int_3>
 <int_4>10</int_4>
 </ns:getResults>
 </soap:Body>
</soap:Envelope>

This method takes four parameters: the identifier of the
session, the task within the session for which the results are
required (3 was the Check Rules task), the index of the first
result required starting at 1, the index of the final result
required (0 for all results).
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns0="http://laserscan.com/RadiusStudio"
xmlns:ns1="http://dto.studio.radius.laserscan.com/jaws">
 <env:Body>
 <ns0:getResultsResponse>
 <result>
 <Results count="10"
finished="1164379794439" first="1" last="10"
started="1164379791002">
 <Summary count="228" error="0" label="3"
total="1355" type="Check Rules">
 <Object class="MOORLAND"
count="228" error="0" total="1355"/>
 <RuleRef count="228" error="0"
ref_id="1a714a8ec0a85abd01dafa55d327e7be" total="1355"/>
 </Summary>
 <Object class="MOORLAND">
 <RuleRef
ref_id="1a714a8ec0a85abd01dafa55d327e7be">&lt;font
color=red&gt;&lt;u&gt;there is exactly 1 LFA
object for which MOORLAND.geometry is contained within
LFA.geometry&lt;/u&gt;&lt;/font&gt;</Rule
Ref>
 <Attribute name="ID">62.0</Attribute>
 <Attribute name="geometry">
 <MBR x0="304193.000139739"
x1="361489.001589227" y0="482708.995242653"
y1="527026.999345939"/>
 </Attribute>
 </Object>
…… truncated ……
The Results element indicates the number of individual
results contained and the start and end timestamps as
milliseconds since UTC origin. The response has two major
sections: the summary which gives overall conformance
levels for the rules checked; the detailed per-feature metadata
(i.e. which features failed which rule checks). The Rule
identifier and text is included with any unique key attributes

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

and the bounding box (envelope) of the checked feature
geometry attribute. Detailed feature level metadata can be
used in manual reconciliation.

This information can be used to make a range of decisions
about data quality in the overall context of a workflow. In the
example above, the service indicates that 288 out of 1355
(16.8%) failed the single rule check giving an overall
conformance level of 83.2%.

4. CONCLUSIONS

We have shown that distributed geospatial data validation
and data quality reporting is feasible within an open Web
Services environment. In addition, the utility of encoding
quality rules and constraints in an open XML-based form has
been shown and the approach followed, that of using a first-
order logic formalism, appears to yield rules which are both
compact and to a large degree generic and implementation
independent. The choice to implement the conformance
service using standard SOAP RPC/literal bindings and the
success of the resulting scenario also shows that the
methodology is suitable for integration into much richer and
potentially dynamic workflow environments such as are
enabled by enterprise workflow technologies like BPEL
(OASIS, 2007).
The implications of collecting quantitative metadata relating
to semantically rigorous constraints for spatial information
are potentially far-reaching. As each of the logical rules or
rulesets can be uniquely identified, this technology opens up
the possibility of establishing standardized spatial semantic
models within specific application domains, such as link-
node in transportation networks. Once such rulesets exist,
data providers may use them to certify their data against the
standard model and publish quantitative quality metrics
within a geospatial metadata portal. As semantic metadata
resources grow, conformance to a particular domain model,
at a given level of quality, becomes yet another input field in
a metadata search for data consumers to hone in on relevant
data sources for reuse in novel applications.
Further work in this area is needed to examine the
relationship between GML application schemas and the
underlying, abstract conceptual models (ontologies) against
which the rules are specified. Eliminating or automating
model transformation steps will be key to improving the
usability of an on-line quality assessment service and
limiting the proliferation of terms that would otherwise
ensue. The number and value of standard rules domains (e.g.
link-node transportation networks, cadastral land
management), the mechanisms for industry standardization
and provision of a set of canonical validation rulesets for
enhancing semantic interoperability between datasets (with
distinct application schemas) should be explored.

5. REFERENCES

Baader, F., 2002 (ed.). Description Logic Handbook,
Cambridge University Press, Cambridge
ISO 19115:2003. Geographic Information – Metadata
ISO 19125-2:2004. Geographic information -- Simple feature
access -- Part 2: SQL option
ISO 19139:2007. Geographic Information – Metadata –
XML schema implementation
OASIS, 2007. WS-BPEL 2.0 - Web Services Business
Process Execution Language. http://www.oasis-
open.org/committees/download.php/22036/wsbpel-

specification-
draft%20candidate%20CD%20Jan%2025%2007.pdf.
OGC, 2004. Web Feature Service (WFS) Implementation
Specification.
http://portal.opengeospatial.org/files/?artifact_id=8339
OGC, 2005. Catalogue Service.
http://portal.opengeospatial.org/files/?artifact_id=5929&versi
on=2
PIRA, 2000. Commercial Exploitation of Public Sector
Information
W3C, 2004a. Web Ontology Language (OWL).
http://www.w3.org/TR/owl-features/
W3C, 2004b. Semantic Web. http://www.w3.org/2001/sw/
W3C, 2003. SOAP – Simple Object Access Protocol.
http://www.w3.org/TR/soap/
W3C, 2004c. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/

http://www.oasis-open.org/committees/download.php/22036/wsbpel-specification-draft%20candidate%20CD%20Jan%2025%2007.pdf
http://www.oasis-open.org/committees/download.php/22036/wsbpel-specification-draft%20candidate%20CD%20Jan%2025%2007.pdf
http://www.oasis-open.org/committees/download.php/22036/wsbpel-specification-draft%20candidate%20CD%20Jan%2025%2007.pdf
http://www.oasis-open.org/committees/download.php/22036/wsbpel-specification-draft%20candidate%20CD%20Jan%2025%2007.pdf
http://portal.opengeospatial.org/files/?artifact_id=83392
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2
http://portal.opengeospatial.org/files/?artifact_id=5929&version=2
http://www.w3.org/TR/owl-features/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/soap/
http://www.w3.org/Submission/SWRL/

	1.
	1. INTRODUCTION
	2. METHODS
	2.1 Requirements
	2.2 Choice of Rules Language
	2.3 Predicate Types
	Predicate Type
	2.4 Value Types
	Value Type
	2.5 Relation Types
	Relation Types
	Scalar
	Spatial
	2.6 Rule Examples
	2.7 Metadata Publication
	2.8 Implementation

	3. RESULTS
	4. CONCLUSIONS
	5. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

